Deploying Red5 to Tomcat

Author: Paul Gregoire

Contact: mondain@gmail.com

Date: September 2007

Updated: June 2009 for Release 0.8.0

Table of Contents

[1= = Lo PSPPSR 3
DEPIOYMENT......eeeeieeee e 4
Context deSCrIPIOrS.ccoo e 4
RedS Configuration...........oooo oo 5
SPriNG CONtEXES....ccoiieeeeee e, 5
1= 7= T o] 1 (= S 5
WED CONEEXE ... 6
External applications...........coooo i 8
Creating and deploying your appliCation................euueeiiiiiiiiiiiiieeeeeeie e 10
Remote application.............ooo o 10
Local appliCatioN........coooo i 11
=10 0] 0] (=TS T TU] o T 11
Additional web configuration................ccccueuiiiiiiii e 12
Renaming the ROOT war 0 Red5..........ooiiiiiiiie e 13
TroublEeSNOOtING.ccoeiee e e 14
D 7= T V1 (T 3 3 15

T o] [TeTo T =T o1 o |28 16

Preface

This document describes how to deploy Red5 to Tomcat as web application
archive (WAR). The standard Red5 deployment consists of a standalone Java
application with an embedded J2EE container (Jetty or Tomcat) running as a
system service, whereas the WAR version runs inside of a J2EE container.

WAR deployment Standalone server

We have a preference for Tomcat, but it is possible to use the WAR with another
J2EE container.

Deployment

The Tomcat war deployer scans the webapps directory for wars periodically.
When a war is found that has not yet been deployed, the deployer will expand
the war file into a directory based on the filename of the war. A war named
myapp.war would be expanded into a directory named myapp; depending upon
your installation the full path would look similar to this C:\Tomcat-
6.0.18\webapps\myapp.

Red5 server is packaged into a file named ROOT.war, this filename has a
special connotation on most J2EE application servers and is normally the default
or root web context. The root web context is responsible for servicing requests
which do not contain a path component. A url with a path component looks like
http://www.example.com/myapp wheres root web application url would resemble
this http://www.example.com/. An additional configuration file the context
descriptor, is located in the META-INF directory for each web context.
Applications that are not accessed via HTTP, do not require a web / servlet
context. The root war file contains nearly everything that is in a standalone server
build except for embedded server classes and select configuration files.

The ROOT.war may be renamed to red5.war, but this has not been tested and
would require changes to some of the configuration files. Remember that this
name and its resolution within the J2EE container is primarily for HTTP requests
and should not affect RTMP communications.

Context descriptors

A Context XML descriptor is a fragment of XML data which contains a valid
Context element which would normally be found in the main Tomcat server
configuration file (conf/server.xml). For a given host, the Context descriptors are
located in SCATALINA_HOME/conf/[enginename]/[hostname]/. Note that while
the name of the file is not tied to the webapp name, when the deployer creates
descriptors from the context.xml files contained in the war; their names will match
the web application name.

Context descriptors allow defining all aspects and configuration parameters of a
context, such as naming resources and session manager configuration. It should
be noted that the docBase specified in the Context element can refer to either the
.WAR or the directory which will be created when the .\WAR is expanded or

the .WAR itself.

Red5 Configuration

Configuration of the Red5 server consists of a few context parameters in the
web.xml, a default context file, a bean ref file, and a Spring web context file for
each application that will utilize Red5 features. Web applications that use only
AMF to communicate with Red5 do not require a configuration entry in the
servers application context. The application context which is managed via Spring
is only available to applications that are contained within the root war; due to the
way that the web application classloaders work. In addition, Red5 uses a context
counterpart called a Scope which serves as a container for the context, handler,
server core instance, and a few other objects. A scope is similar to the
application model in FMS.

The initial entry point or startup servlet for Red5 is the WarLoaderServlet and it is
configured as a servlet listener in the web.xml as shown below. Functionally this
servlet takes the place of the Bootstrap class in a standard Red5 server

<listener>
<listener-class>org.red5.server.war.WarLoaderServlet</listener-class>
</listener>

This listener is responsible for starting and stopping Red5 upon receipt of context
initialized and context destroyed container events. The war loader is similar in
function to the Spring ContextLoaderListener servlet but is specialized for Red5.

Spring contexts

There are two types of contexts used by Red5, "default" and "web"; there may be
only one default context but any number of web contexts.

Default context

The default context is synonymous with the global application context and is
responsible for providing objects and resources at the top or global level. Spring
beans in this level are configured via the defaultContext.xml and
beanRefContext.xml which are located in the ROOT classes directory (ex.
C:\Tomcat-6.0.18\webapps\ROOT\WEB-INF\classes). The bean ref file defines
the default.context bean which as an instance of
org.springframework.context.support. ClassPathXmlApplicationContext. Two
other configuration files red5-common.xml and red5-core.xml are used to
construct the default context; these files are derived from the standalone
configuration files of the same names, the primary difference is that the server
embedding sections have been removed.

The default context is referenced in the web.xml via the parentContextKey
parameter:

<context-param>
<param-name>parentContextKey</param-name>
<param-value>default.context</param-value>
</context-param>

This parameter is used by the ContextLoader to locate the parent context, which
in turn allows the global resources to be located. The context loader is used by
the WarLoaderServiet to initialize the web contexts.

The scope counterpart to the global context is the global scope and it is
referenced in the web.xml via the globalScope parameter:

<context-param>
<param-name>globalScope</param-name>
<param-value>default</param-value>
</context-param>

Web context

Web context definitions are specified in Spring configuration files suffixed with
-web.xml; If your application is named oflaDemo then its configuration file would
be named oflaDemo-web.xml. The Spring web context files should not be
confused with J2EE context descriptors as they are only used for red5 web
contexts and the later are used by Tomcat. Each web context must have a
corresponding configuration file, the configuration files are specified using an ant-
style parameter in the web.xml as shown below.

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/classes/*-web.xml</param-value>
</context-param>

Context configuration files specify the resources that are used to notify the
application about joining / leaving clients and provide the methods that

a client can call. Additionally, the configuration files specify the scope hierarchy
for these classes.

Every context configuration must contain a minimum of three entries - a context,
scope, and handler. The only exception to this rule is the root web application
since it does not have a handler application, in this case the global handler is
used.

e Context - Each context must have a unique name assigned since all the
contexts exist within a single Spring application context. The root web
context is named web.context, additional contexts suffix this base name
with their web application name; for example oflaDemo would be named
web.context.oflaDemo. A context is specified in the web context file as
shown below.

<bean id="web.context" class="org.red5.server.Context">
<property name="scopeResolver" ref="red5.scopeResolver" />
<property name="clientRegistry" ref="global.clientRegistry" />
<property name="servicelnvoker" ref="global.serviceInvoker" />
<property name="mappingStrategy" ref="global.mappingStrategy" />
</bean>

Scope - Every application needs at least one scope that links the handler
to the context and the server. The scopes can be used to build a tree
where clients can connect to every node and share objects inside this
scope (like shared objects or live streams). You can consider the scopes
as rooms or instances.

The root scope has the name web.scope, additional scope names should

follow the naming convention specified for contexts. A scope for oflaDemo
would be named web.scope.oflaDemo so that it will not conflict with other

contexts.

A scope bean has the following properties:

1. server - This references the server red5.server

2. parent - The parent for this scope is nhormally global.scope

3. context - Context for this scope, use the web.context for root and

web.context.oflaDemo for oflaDemo

4. handler - Handler for this scope, which is similar to a main.asc in
FMS.
contextPath - The path to use when connecting to this scope.
virtualHosts - A comma separated list of host names or IP
addresses this scope listens on. In the war version we do not
control the host names, this is accomplished by Tomcat. A value of
“*» which means “all” is expected here.

o o

The root scope definition looks like this:

<bean id="web.scope" class="org.red5.server.WebScope" init-method="register">
<property name="server" ref="red5.server" />
<property name="parent" ref="global.scope" />
<property name="context" ref="web.context" />
<property name="handler" ref="global.handler" />
<property name="contextPath" value="/" />
<property name="virtualHosts" value="*" />
</bean>

The contextPath is similar to the docBase in the J2EE context file for each
web application. Where the docBase is used to locate resources by HTTP,
the contextPath is use to find resources via RTMP. Your applications may
add additional elements after the configured path to dynamically create
extra scopes. The dynamically created scopes all use the same handler
but have their own properties, shared objects and live streams.

Handler - Every context needs a handler to provide the methods called by
connecting clients. All handlers are required to implement
org.redb.server.api.IScopeHandler, however you may implement

additional interfaces for controlling access to shared objects or streams. A
sample implementation is provided with Red5 that may be used as your
base class: org.red5.server.adapter.ApplicationAdapter. Please refer to
the javadoc for this class for additional details.

As an example the scope handler for the oflaDemo is shown:

<bean id="web.handler.oflaDemo" class="org.red5.demos.oflaDemo.Application"/>

The id attribute is referenced by the oflaDemo scope definition:

<bean id="web.scope.oflaDemo" class="org.red5.server.WebScope" init-
method="register">
<property name="server" ref="red5.server" />
<property name="parent" ref="global.scope" />
<property name="context" ref="web.context.oflaDemo" />
<property name="handler" ref="web.handler.oflaDemo" />
<property name="contextPath" value="/oflaDemo" />
<property name="virtualHosts" value="*" />
</bean>

If you don't need any special server-side logic, you can use the default
application handler provided by Red5:

<bean id="web.handler" class="org.red5.server.adapter.ApplicationAdapter" />

External applications

An external application refers to a web application that accesses Red5 outside of
the ROOT web application. Whether these applications exist within the same
JVM instance or not, they may only access Red5 via RTMP or the AMF tunnel
servlet. The tunnel servlet is configured in the web.xml for each application that
requires AMF communication with Red5, an example is shown below:

<context-param>
<param-name>tunnel.acceptor.url</param-name>
<param-value>http://localhost:8080/gateway</param-value>
</context-param>

<context-param>
<param-name>tunnel.timeout</param-name>
<param-value>30000</param-value>
</context-param>

<servlet>
<servlet-name>gateway</servlet-name>
<servlet-class>org.red5.server.net.servlet.AMFTunnelServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>gateway</servlet-name>
<url-pattern>/gateway</url-pattern>
</servlet-mapping>

The tunnel servlet class must be on the classpath of the application under which
it is executed. In addition to the tunnel servlet the

org.redb.server.net.servlet.ServletUtils class is required along with the following
library jars:

commons—-codec-1.3.jar

commons-httpclient-3.0.1.jar

mina-core-2.0.0-M6.jar

slf4j-api-1.5.6.jar

jcl-over-slf4j-1.5.6.jar

jul-to-slf4j-1.5.6.jar

log4j-over-slf4j-1.5.6.jar

logback-core-0.9.14.jar

logback-classic-0.9.14.jar

red5S-remoting-0.8.0.jar (contains ServletUtils class)

These jars should be placed in the WEB-INF/lib directory of your application. ex.
C:\Tomcat-6.0.18\webapps\myapp\WEB-INF\lib

Creating and deploying your application

In the following section, two applications will be covered. The first will be a web
application that communicates with Red5 via AMF or RTMP and has its own
handler, referred to as “RemoteApp”. The second will consist an SWF that
communicates with Red5 via RTMP, this application will be called “LocalApp”.
Any IDE may be used to create these applications as long as it supports Java,;
the Eclipse IDE is suggested. SWF files outlined in the examples were created
using AS3 in Flex.

Remote application

This example will provide you with the minimum amount of configuration needed
for a remote Red5 application. The following resources will be created:

e J2EE web application

e Client SWF

e Red5 handler class

e Spring web context

Steps

1. Create a web application named RemoteApp in your IDE.

2. Obtain a red5 jar, which may be downloaded from http.//red5.googlecode.com/
svn/repository/red5/red5-0.8.0.jar or built from source with the command “ant
jar’. This library is needed if you extend the ApplicationAdapter for your
scope handler.

3. Obtain the remoting jar, this may be accomplished by building yourself
from the command line with “ant remotejar” or by downloading it from http://
red5.googlecode.com/svn/repository/red5/red5-remoting-0.8.0.jar. This library
provides the AMF tunnel servlet.

4. Place the library jars in your project library directory and add them to your

build classpath.

Compile the Java and Flex source.

Create a directory named RemoteApp in the Tomcat webapps directory.

ex. C:\Tomcat-6.0.18\webapps\RemoteApp

Copy the contents of the web directory to the RemoteApp directory.

From the bin directory copy the RemoteApp.swf to the

webapps\RemoteApp directory.

9. Copy the lib directory and its contents to the WEB-INF, excluding the
red>5 jar file.

10.Copy the whole example directory and the RemoteApp-web.xml file from
the bin directory to the classes directory under ROOT. ex. C:\Tomcat-
6.0.18\webapps\ROOT\WEB-INF\classes

11.Restart tomcat

12.0pen your browser and go to:
http://localhost:8080/RemoteApp/RemoteApp.html

o o

© N

13.Click on the RTMP or HTTP connect buttons. For a successful test you
should see a server response of “Hello World”.

Local application

A simple application that resides entirely within the ROOT web application. This
example consists of a Spring web context, handler class, and a client SWF.

Steps

1. Create a web application named LocalApp in your IDE.

2. Obtain a redb.jar, which may be downloaded from http./red5.googlecode.com/
svn/repository/red5/red5-0.8.0.jar or built from source with the command “ant
jar’. This library is needed if you extend the ApplicationAdapter for your
scope handler.

3. Place the library jar in your project library directory and add it to your build

classpath.

Compile the Java and Flex source.

Copy the LocalApp.html and LocalApp.swf from the bin directory to the
ROOT directory. ex. C:\Tomcat-6.0.18\webapps\ROOT

6. Copy the whole example directory and the LocalApp-web.xml file from the
bin directory to the classes directory under ROOT. ex. C:\Tomcat-
6.0.18\webapps\ROOT\WEB-INF\classes

Restart tomcat

Open your browser and go to: http://localhost:8080/LocalApp.html

Click on the connect button. For a successful test you should see a server
response of “Hello World”.

S

© o~

Example Source

The example application source is available in Subversion at
http.//red5.googlecode.com/svn/java/example/trunk

Additional web configuration

AMF gateway - This servlet provides communication with server applications
using AMF.

<servlet>
<servlet-name>gateway</servlet-name>
<servlet-class>org.red5.server.net.servlet.AMFGatewayServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>gateway</servlet-name>
<url-pattern>/gateway</url-pattern>
</servlet-mapping>

RTMPT - This servlet implements an RTMP tunnel via HTTP, this is normally
used to bypass firewall issues.

<servlet>
<servlet-name>rtmpt</servlet-name>
<servlet-class>org.red5.server.net.rtmpt.RTMPTServlet</servlet-class>
<load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>rtmpt</servlet-name>
<url-pattern>/fcs/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>rtmpt</servlet-name>
<url-pattern>/open/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>rtmpt</servlet-name>
<url-pattern>/idle/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>rtmpt</servlet-name>
<url-pattern>/send/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>rtmpt</servlet-name>
<url-pattern>/close/*</url-pattern>
</servlet-mapping>

Security - The following entries are used to prevent retrieval of sensitive
information.

<security-constraint>
<web-resource-collection>
<web-resource-name>Forbidden</web-resource-name>
<url-pattern>/WEB-INF/*</url-pattern>
</web-resource-collection>
<auth-constraint />
</security-constraint>

<security-constraint>
<web-resource-collection>

<web-resource-name>Forbidden</web-resource-name>
<url-pattern>/persistence/*</url-pattern>
</web-resource-collection>
<auth-constraint />
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>Forbidden</web-resource-name>
<url-pattern>/streams/*</url-pattern>
</web-resource-collection>
<auth-constraint />
</security-constraint>

Renaming the ROOT war to Red5

In certain circumstances you may need to rename the war so that it does not
override the ROOT web application of your container. There are just a few steps
to make this work:

1. Open the web.xml for red5

tomcat/webapps/red5/WEB-INF/web.xml

2. Change the webAppRootKey parameter to /red5

<context-param>
<param-name>webAppRootKey</param-name>
<param-value>/red5</param-value>
</context-param>

3. Open the root-web.xml file

tomcat/webapps/red5/WEB-INF/classes/root-web.xml

4. Change the contextPath and virtualHosts in the web.scope bean to look like
this:

<property name="contextPath" value="/red5" />
<property name="virtualHosts" value="*" />

Troubleshooting

If you have problems with deployment or if your application does not start, follow
these steps prior to posting a bug. Directory examples use a typical windows
based path structure.

1

2.

7.

. Stop the Tomcat server

Locate your Tomcat installation directory
C:\Program Files\Apache\Tomcat

. Delete the "work" directory

C:\Program Files\Apache\Tomcat\work

. Delete the "Catalina" directory from the "conf" directory

C:\Program Files\Apache\Tomcat\conf\Catalina

. Delete the expanded war directories, if they exist

C:\Program Files\Apache\Tomcat\webapps\ROOT
C:\Program Files\Apache\Tomcat\webapps\echo
C:\Program Files\Apache\Tomcat\webapps\SOSample

. Ensure your WAR files are in the webapps directory

C:\Program Files\Apache\Tomcat\webapps\ROOT.war
C:\Program Files\Apache\Tomcat\webapps\echo.war
C:\Program Files\Apache\Tomcat\webapps\SOSample.war

Restart Tomcat

If you still experience problems, gather the following information and post an
issue on Jira after you do a quick search to see if others have experienced the
same problem.

1. Java version

2. Tomcat version

3. Operating system

4.

Red5 version (0.6.2, Trunk, Revision 2283, etc...)

Definitions

AMF — A binary format based loosely on the Simple Object Access Protocol
(SOAP). It is used primarily to exchange data between an Adobe Flash
application and a database, using a Remote Procedure Call. Each AMF message
contains a body which holds the error or response, which will be expressed as an
ActionScript Object.

Ant — Software tool for automating software build processes. It is similar to make
but is written in the Java language, requires the Java platform, and is best suited
to building Java projects.

AS3 — A scripting language based on ECMAScript, used primarily for the
development of websites and software using the Adobe Flash Player platform.

Flex — Software development kit and an IDE for a group of technologies initially
released in March of 2004 by Macromedia to support the development and
deployment of cross platform, rich Internet applications based on their proprietary
Macromedia Flash platform.

RTMP — Real Time Messaging Protocol (RTMP) is a proprietary protocol
developed by Adobe Systems that is primarily used with Adobe Flash Media
Server to stream audio, video, and data over the internet to the Adobe Flash
Player client. RTMP can be used for Remote Procedure Calls. RTMP maintains a
persistent connection with an endpoint and allows real-time communication.
Other RPC services are made asynchronously with a single client/server request/
response model, so real-time communication is not necessary.

RTMPT — RTMP using HTTP tunneling.

SWF — Proprietary vector graphics file format produced by the Flash software
from Adobe. Intended to be small enough for publication on the web, SWF files
can contain animations or applets of varying degrees of interactivity and function.
SWEF is also sometimes used for creating animated display graphics and menus
for DVD movies, and television commercials.

Tomcat — A web container, or application server developed at the Apache
Software Foundation (ASF). Tomcat implements the servlet and the JavaServer
Pages (JSP) specifications from Sun Microsystems, providing an environment for
Java code to run in cooperation with a web server. It adds tools for configuration
and management but can also be configured by editing configuration files that
are normally XML-formatted. Tomcat includes its own internal HTTP server.

Bibliography
Red5 — http://osflash.org/red5

Apache Tomcat — http://tomcat.apache.org

Wikipedia — http://en.wikipedia.org

	Preface
	Deployment
	Context descriptors

	Red5 Configuration
	Spring contexts
	Default context
	Web context
	External applications

	Creating and deploying your application
	Remote application
	Local application
	Example Source

	Additional web configuration
	Renaming the ROOT war to Red5
	Troubleshooting
	Definitions
	Bibliography

